LETTER OF TRANSMITTAL

Date: September 26, 2014

To: Dr. Thomas Boothby TEBARC@engr.psu.edu

From: Nick Dastalfo njd5133@psu.edu

Dear Dr. Boothby,

The enclosed documents include my Structural Technical Report 2 for AE481W – Senior Thesis. Technical Report 2 is a detailed structural analysis of 8621 Georgia Avenue in Silver Springs, Maryland.

This report includes a building abstract and site plans in addition to all necessary calculations for the gravity, wind, snow, and seismic load determinations for the building. There will be a detailed analysis of the floor loads, roof loads, and the horizontal distribution of lateral forces.

Thank you for taking the time to read and review my report. I am eagerly looking forward to discussing the project with you in the future.

Sincerely,

Nick Dastalfo

TECHNICAL REPORT 2

8621 GEORGIA AVENUE SILVER SPRING, MARYLAND

NICK DASTALFO | STRUCTURAL ADVISOR: DR. THOMAS BOOTHBY SEPTEMBER 26, 2014

Executive Summary

The building at 8621 Georgia Avenue is proposed to be built on an existing 0.69 acre parking lot located in the downtown business district of Silver Spring, Maryland. The 17 story, 347,000 ft² project will create more downtown multi-family housing and parking for the booming region. The project has recently finished the permit phase of development and is nearly the start of construction.

The building will be the tallest of the surrounding buildings and will be clearly visible along specific urban view corridors and pedestrian heavy areas. Therefore, detailed focus was cast on the architectural impact of the form of the glass curtain wall clad building in these locations. Being the tallest building in the area came along with the challenges of remaining under the zoning height restriction of the area. Efforts were made to decrease the floor to floor height by using post tensioning in order to squeeze the most amount of floors into the building.

The first four stories used for parking, retail, and café have flat plate concrete slab floors with minimal use of concrete drop panelss and beams when necessary. The 5th through 17th floor utilize post-tensioned concrete flat plates with spans varying from 15'-10" to 24'-0" throughout these 12 floors of apartments. The variation in column locations and the use of transfer girders were eliminated due to strategic placing of columns in a regular grid that was appropriate for both the parking garage and the apartments.

The building was designed considering live loads, gravity loads, snow loads, wind loads, seismic loads, and lateral loads. The lateral force resisting system in the building is primarily made up of shear walls around the two stair towers of the structure.

The design for this building was governed by the International Building Code 2012 as well as the 'Minimum Design Loads for Buildings and Other Structures' (ASCE 7-10). These codes reference other standards that were integral in the design process and include ACI318-11 and parts 1-5 of the ACI Manual of Standard Practice, PTI's "Post Tensioning Manual, 6th Edition, the "Manual of Standard Practice" from CRSI, and AISC's Steel Construction Manual, 14th Edition.

This report will cover all of these features and many more, in greater detail.

Table of Contents

Executive Summary	2
Table of Contents	3
Building Abstract	4
Site Plan	5
Location Plan	5
Referenced Documents	6
Roof Loads	7
Floor Loads	10
Exterior Wall Loads	14
Snow Loads	17
Snow Drift Loads	19
Wind Loads	23
Seismic Loads	38

8621 GEORGIA AVENUE SILVER SPRING, MARYLAND

General Building Data:

Building Height: 161 feet Number of Stories: 17 floors Size: 347,009 ft² Cost: \$51 million Occupancy: Mixed Use -Residential, Parking Garage, Retail

Architecture:

The façade of the building brings a refreshing modern addition to the skyline of the developing city of Silver Spring. The position of the building takes advantage of two major view corridors in the urban fabric and has an inviting present on the busy Georgia Avenue.

<u>Structural Systems:</u>	Constructi	<u>on:</u>	
	MEP:		
	Lighting /	<u>Electrical:</u>	
	Project Sponsor: F Associates	Iolbert Apple	OCIATES

Nick Dastalfo I Structural Advisor: Dr. Thomas Boothby

Site and Location Plan

8621 Georgia Avenue

Documents Referenced for Report

Shown below is a list of the design codes, standards or other references that were used in the structural analysis of 8621 Georgia Avenue for Technical Report 2.

- American Society of Civil Engineers
 - ASCE 7-10: Minimum Design Loads for Buildings and Other Structures
- Montgomery County Building Codes and Standards
- 8621 Georgia Avenue Silver Spring, MD
 - Construction Drawings
 - Specifications
 - Correspondence with Project Engineers
- American Institute of Steel Construction
 - AISC Manual of Load and Resistance Factor Design, 3rd ed.

Roof Loads

8621 Georgia Avenue

Nick Dastalfo

Jech Report #2

9

Typical Roof Live Loads

ASCE 07-10, Table 4-1: Minimum Uniformity Distributed Live Loads

+ See Snow loads, for controlling woof live load, where applicable,

* The Engineer also added an additional 30 psf superimposed dead load. This design desision may have been made for a number of Bresseable Buctors such as 1: snow accumulation, ponding, noof maintenance, etc.

* The Engineer also chose to increase the minimum like load, provided in ASCE 07-10, to 30 psf.

Floor Loads

8621 Georgia Avenue

Nick Dastalfo Tech Report #2 Floor Loads 12 Floor Dead Loads Continued ... Under Bibretensilon Area: - The bib-retension area is located on the 5th Shoar set back and is supported by mild reinforced concrete with a continuous drop panel. 5-8" MAX Soil / Water preshing soil Suil 112" 8 N 20 4--For worst case, assume planter is saturated &= 62.4 pcf Uniformly Distributed Load -Avg 20" Concrete - 5-8" Water - Water - proofing = 250 psf = 353.8 psf - 2 psf = 5 psf - Collatival Total = 610.8 psf

Nick Dastalfo Tech Report #2 Floor Loads 13 Floor Live Loads

Occupancy	Design Value	ASCE 7-10 Code Minimum
Residential	40+ 10 (partition).	40 yest + 10 (partitions)
Parking Oarage	50 psf	40 psf
First Flour Netuil	100 pst	100psf
Public Space	100 psf	100 pst
Fitness	100 psf	roopsf

Exterior Wall Loads

Snow Loads

Importance Factor, Is - Table 1.5-2

Ground Snow Load, $p_g = Figure 7-1$ $p_g = 25 \text{ psf} \rightarrow 18 \text{ ted in Asce}$ $* \text{local code specifies a case of <math>p_g = 30 \text{ psf}$ $p_f = 0.7(1.0)(1.0)(30 \text{ psf}) = 21 \text{ psf}$ $p_f = 21.0 \text{ psf}$

Snow Drift Loads

Nick boothing Teach Report #2 Show Drifts 20
Snow Drift
Is calculating and differ regulted?
If
$$\frac{h}{h} < 0.2$$
, snow drift loads are not applied to $h_0 = \frac{0.5}{8} = \frac{30}{0.13/g} + 10.4 = \frac{32}{1000} + 1.68$
 $\frac{h}{8} = \frac{1}{0.13} + \frac{3}{100} + \frac{3}{100} + 1.68$
 $\frac{h}{8} = 0.13 + 10.4$, Equation 7.7-1
Dur forespet, $h = 4.33$
 $\frac{h}{h} = \frac{4.33}{168} = 2.58 \Rightarrow 0.2$... Consider Snow Drift
-All roots are flat or cluse to Plat. The snow drifting will
difference, by the 18th Hoor puol.
Darapet Snow Drift
 $L_0 = 102^2 - 2^2$ $p_3 = 30 \text{ psf}$
Learned
 $h_2 = 3.3^2$ (Figure 7-9)
 $h_2 \leq h_2$, $h_2 \leq 1.48^2$
 $3.3^2 > 2.18^2$... Use $h_2 = 3.3^2$ in deeph

Nick Dashallo Tech Report #2 Snow Brits 21
Snow Diff Cantinued

$$PA = hA'S = 33[0.13(20) + 14]$$

 $PA = 59 pt$
U3
Stocharge Load Due to Diffing
U3
U3
Stocharge Load Due to Diffing
U3
U3
Snow Diff on 16⁴⁴ / 17¹⁴ Flows
 $h_{1}=1.68^{14}$, $h_{1}=12.32^{14}$
 $H_{2.32}^{2} = 7.33 > 0.2$ i Conside Snow Diff
Hermardi
 $A_{12}=33^{14}$ $P_{12}=20pt$
 $h_{2}=1.58^{14}$ $H_{2}=40.55^{14}$
 $h_{2}=1.5$ (Figure 7-9)
 $h_{2}>hd$, therefore $w = 41 \frac{h_{1}^{2}}{h_{2}} = 40.55^{14}$
 $w = 5.36^{14}$
Ubduced
 $L_{1}=1.52^{14} \in worst case different, along CL 6 $ 71$
 $h_{2}=40(3) = 3.0$ $30 > 1.5$, inthe 3.0 h design
 $h_{2}>h_{2}$, therefore $w = 41h_{2} = 12^{14}$

Wind Loads

Nick Dostabbo Tech Report #2 Wind Loads co
i) Frequency betermination Continued...

$$n_{a} = \frac{385(C_{a})^{a}}{h} - For convert other well buildings
where,
$$C_{w} = \frac{100}{A_{a}} \sum_{n=1}^{a} \left(\frac{h}{h_{1}}\right)^{n} \cdot \frac{h}{(1+cos(b))^{n}}\right]$$
Apply Summation to each Shear Wall...
Shear Wall I (at CL C, 3-4) E-W
Plasme 1-44

$$h = 161^{n}$$

$$h = 237 \cdot 10^{n}$$

$$A_{2} = \frac{H_{2}}{1+s}(18-4)^{n} = 21.39 \text{ pt z}$$

$$D_{1} = 18^{1} \cdot 1^{n}$$

$$A_{1} = \frac{H_{1}}{12} \times 18^{2} + 4^{n} = 21.39 \text{ pt z}$$

$$D_{1} = 18^{1} \cdot 1^{n}$$

$$A_{1} = \frac{H_{1}}{12} \times 18^{2} + 4^{n} = 21.39 \text{ pt z}$$

$$D_{1} = 18^{1} \cdot 1^{n}$$

$$A_{1} = \frac{H_{2}}{12} \times 28^{2} + 4^{n} = 33.06 \text{ Pt}^{2}$$

$$D_{2} = 28^{2} - 4^{n}$$

$$\left(\frac{16}{1853}\right)^{2} \cdot \frac{33.06}{1+s(12737)} = 61.2$$
Shear Wall 2 (at CL C, 5-6) E-W

$$h = 161^{n}$$

$$h = 161^{2}$$

$$A_{1} = \frac{H_{2}}{12} \times 18^{n} \text{ the } 21.39 \text{ pt z}$$

$$A_{1} = \frac{H_{1}}{12} \times 18^{n} \text{ the } 21.39 \text{ pt z}$$

$$A_{1} = \frac{H_{1}}{12} \times 18^{n} \text{ the } 18^{2} \text{$$$$

	Nick Dastalfo	Tech Report #2	Wind Loads	26
	Shear Wall $h = 161$ $h = 129$ $h = 129$ $A_{i} = \frac{12}{12}$ $D_{i} = 9$	==3 (at CL 3, C-D) N- ==	5	
	$\left(\frac{161}{129.33}\right)$	$\frac{9.33}{1+.83\left(\frac{12.9.33}{9.33}\right)^2} = 0.09$		
	Shear Wall $=$ Floors 1- h= 161 hi= 28 Ai = $\frac{12}{12}$ Di = 21	$\frac{4}{-10^{11}} \left(at CL 4, C-b\right) N-5$ $\frac{4}{-10^{11}} = 21.5 \text{ ft}^{2}$ -6^{11}		
0	$\left(\frac{161}{28.83}\right)$	$\frac{2}{1+0.83} \left(\frac{28.83}{21.5}\right)^2 = 269.07$		
	floors 5- k = 161 $h_{i} = 129$ $A_{i} = \frac{12}{12}$ $D_{i} = 9^{2} -$	17 -4" -4" = 9.33 Atz 4"		
	$\left(\frac{161}{129.33}\right)$	$\frac{9,55}{1+0.83(\frac{129,33}{9,33})^2} = 0.09$		
	Shear Wall # $h=161^{\circ}$ $h:=164^{\circ}$ $A_{2}=\frac{12}{12}$ $D_{1}=19^{\circ}$	5(a+CLG, 5-6) =-W =* $19^{1}-6^{4}=19.5$ ft. -6"		
	(161.0)	$\frac{19.5}{1+0.83\left(\frac{169.67}{19.5}\right)^2} = 0.28$		

Nick Destallo	Tech	Report #2	Wind	Loads	27
Shear Wall $h = 16$ $h_{i} = 16$ $A_{i} = \frac{12}{12}$ $D_{i} = 4$ $\left(\frac{161}{169.6}\right)$	$\frac{*6}{2^{2}-4^{2}} (a)$	(2 J, 4-6) E $(42.33 St^2)$ $(\frac{33}{42.33})^2 = 2.6$	-W 6		
Shear Wall h = 16 hi = 177 $A_{i} = \frac{17}{17}$ $D_{i} = 3$ $\left(\frac{161}{177,67}\right)$	$\frac{\pm 7}{2}$ (at $\frac{1}{2}$ * 32'-8" $\frac{1}{2}$ * 32'-8" $\frac{1}{2}$ * 32'-8" $\frac{1}{2}$ * 32'-8"	CL 5.5, G-J N = 32.67 ft ² $\frac{67}{177.67} = 4.87$	-2-		
Shear Wall h = 161 h = 161 h = 17 $A_{1} = \frac{17}{1}$ $A_{2} = \frac{17}{1}$ $b_{2} = 32$ $\left(\frac{161}{177.67}\right)$	$\frac{*8}{2}$ (a+ $\frac{1}{2}$ * 32'-6": $\frac{1}{2}$ * 32'-6": $\frac{1}{2}$ * 32. $\frac{32}{1+0.83}$ ($CL 6, G-5 N^{-1}$ = $32.5 f_{2}^{2}$ $\frac{5}{32.5} = 1.11$			
Shear Wall h = 161 h := 39 $A_{i} = \frac{17}{17}$ $D_{i} = 21$ $\left(\frac{161}{39,83}\right)$	$\frac{49}{10^{11}}$ (at ($\frac{1}{10^{11}}$ × 21)-6" = $\frac{1}{10^{11}}$ (at ($\frac{1}{10^{11}}$ × 21)-6" = $\frac{1}{10^{11}}$ (at (21.5 ff^2 $(\frac{39,83}{21.5})^2 = 91,28$			

Nick Dastalfo	Tech Repart #2	Wind Loads	28
Shear Wall $h = 161^{2}$ $h_{1} = 39^{2} - 10$ $A_{2} = \frac{12^{2}}{12}$ $D_{1} = 19^{2} - 10$ $\left(\frac{161}{2} \right)^{2}$	± 10 (at CL. 6, C-D) N- $\times 19^{-10'} = 19.83^{\circ}$ 19.83 = 74.51	2	
(39.83)	$1 + 0.83 \left(\frac{39.83}{19.33}\right)^{2} - 19.31$ $E_{11} = (a + C_{12} C_{15}, 5 - 6) E - W$ $3 - 4'' = 18.33 + 4.2$ $18.33 = -60.80$		
$\frac{(39,83')}{5hear Wall = 161'}$ $h=161'$ $h:=39'-10''$ $A_{2} = \frac{12''}{12} \times D_{2} = 18'-4''$ $(161)^{2}, \dots$	$\frac{1+.83(\frac{39.83}{18.33})^{2}}{18-4^{1}} = 18.33 \text{ ft}^{2}$ $\frac{18.33}{18.33} = 60.89$		
(39.83) / <u>Shear Wall</u> h= 161 hi= 44-10 Ai= <u>12</u> Di= 16 $(161)^{2}$.	$+ a_{B3} \left(\frac{34.83}{18.33} \right)^{2} = 60.101$ $= \frac{13}{13} (a + CL, F.3, 7-8) = -1$ $= 16^{\circ} = 16 \text{ ft}^{2}$ $= \frac{16}{1+,83} \left(\frac{04.83}{16} \right)^{2} = 27.46$		
	1.10		1

Nick Dectalls Tech. Report #2 While Loads 24
Sheer Wall # 14 (at CL, H, HS) E-W
h = 161
H = 57 - 47
At =
$$\frac{17}{12} * 22^{-27} = 22.75$$
 H²
W = 22 - 9"
(161)², -22.75
H = 42.83
• Find Cu
Math - South
As = [(82-7'x 18) + (134-4'x 102-1')+(44) × 182-6') + (162-5''x 92-4')
= 23,998.7 H²
 $\frac{2}{2} (\frac{h}{hc})^{5} - \frac{A}{hc}}{1+087(165)} = 0.09 + 269.02 + 0.09 + 4/87 + 1.11 + 91.28 + 74.51 = 440.97$
Cu = $\frac{10.5}{25,998.7} (440.97) = 1.8377$
East - West
As = 23,998.7 H²
 $\frac{2}{5} (\frac{h}{hc})^{7} - \frac{A}{hc}}{1-087(165)} = 71.05 + 61.2 + 0.35 + 0.28 + 2.66 + 60.89 + 60.89 + 60.89 + 22.46 + 42.83 = 327.61
Cu = $\frac{10.5}{25,998.7} (327.6) = 1.3655$
Frequency
 $M_{a,b,5} = \frac{385 (1.827)^{a,5}}{161} = 3.24 Hz.$
 $M_{a,c,w} = \frac{385 (1.927)^{a,5}}{161} = 2.79 Hz.$
 $M_{a} > 1 Hz + Hwebre the structure can be considered hyth.$$

Nick Dastalfo Tech Report #2 Wind Loads D) Gust Effect Factor Continued. - Far a rigid structure G can be taken as 0.85 or by the Following Formula (Section 26.9.4) G=0.925 (1+1.7go Iz Q) 1+1.7go Iz 90=91= 3.4 (Section 26.9.4) For exposure Calegory C: C=0.2 (Table 26.9-1) L=500 A E=0,2 Zm1= 15 At. Z=0.6 h=0.6(161)=96.6 ft > Zmh=15A. $I_2 = c \left(\frac{33}{2}\right)^{1/6} = 0.2 \left(\frac{33}{96.6}\right)^{1/6} = 0.167$ $Q = \sqrt{\frac{1}{1+0.63} \left(\frac{B+h}{L}\right)^{0.63}} = \sqrt{\frac{1}{1+0.63} \left(\frac{134.33+161}{619.82}\right)^{0.63}}$ =0.847 $L_2 = l(\frac{z}{33})^{\overline{e}} = 500(\frac{96.6}{33})^{0.2} = 619.82$ $G = 0.925 \left(\frac{1+1.7(3.4)(0.167)(.847)}{1+1.7(3.4)(0.167)} \right) = 0.894$ -The smallest B will result in the largest Gust Effect Factor; Therefore the B from the North-South Direction was used to find the controlling Gust Effect Factor. This is greater than the alternate of 0.85 given in Section 26,9.4, use the greater of the two, which will produce a greater wind load. G = 0.894

$$\frac{1}{2} \frac{\text{Determine Velocity Pressure Exposure Coefficient, k_2}{\text{Table 27.3-1}}$$

$$At floor 2 \text{ where } z < 15 \text{ ft}, \quad K_z = 2.01 \left(\frac{15}{2g}\right)^{2g}, \text{ otherwise}$$

$$K_z = 2.01 \left(\frac{z}{2g}\right)^{2g}$$

For Exposure Category C, \$\$=9.5 Zg=900Ft (Table 26,9-1)

$$\begin{aligned} k_{z} (104+) &= 2.01 \left(\frac{15}{900}\right)^{\frac{2}{9.5}} &= 0.8489\\ k_{z} (19.54+) &= 2.01 \left(\frac{19.5}{900}\right)^{\frac{2}{9.5}} &= 0.8971\\ k_{z} (294+) &= 2.01 \left(\frac{29}{900}\right)^{\frac{2}{9.5}} &= 0.9753\\ k_{z} (404+) &= 2.01 \left(\frac{40}{900}\right)^{\frac{2}{9.5}} &= 1.0436\\ k_{z} (494+) &= 2.01 \left(\frac{49}{900}\right)^{\frac{2}{9.5}} &= 1.0891\\ k_{z} (594+) &= 2.01 \left(\frac{59}{900}\right)^{\frac{2}{9.5}} &= 1.1826\\ k_{z} (684+) &= 2.01 \left(\frac{59}{900}\right)^{\frac{2}{9.5}} &= 1.1869\\ k_{z} (774+) &= 2.01 \left(\frac{77}{900}\right)^{\frac{2}{9.5}} &= 1.1869\\ k_{z} (874+) &= 2.01 \left(\frac{77}{900}\right)^{\frac{2}{9.5}} &= 1.1979\\ k_{z} (874+) &= 2.01 \left(\frac{90}{900}\right)^{\frac{2}{9.5}} &= 1.2291\\ k_{z} (964+) &= 2.01 \left(\frac{105}{900}\right)^{\frac{2}{9.5}} &= 1.2787\\ k_{z} (105,4+) &= 2.01 \left(\frac{105}{900}\right)^{\frac{2}{9.5}} &= 1.3034\\ k_{z} (1334+) &= 2.01 \left(\frac{124}{900}\right)^{\frac{2}{9.5}} &= 1.3243\\ k_{z} (1334+) &= 2.01 \left(\frac{173}{900}\right)^{\frac{2}{9.5}} &= 1.3439 \end{aligned}$$

Nick Dastalfo Tech Reput \$2 Wind Loads K2 Determination Continued ... 0. 146/3/95 10 11 10

$$k_{2}(14674) = 2.01 (705) = 1.5706$$

$$k_{2}(15854) = 2.01 (158)^{2}(158) = 1.3936$$

$$k_{2}(16174) = 2.01 (161)^{2}(9.5) = 1.3991$$

@ Determine Velocity Pressure Exposure, Ze

 $Q_2 = 0.00256$ Kz Kzt Kd V² Kz = varies by height Kzt = 1.0

Kd = 0.85V = 115mph

92=0.00256 (K2)(1.0) (85) (115)2 = 28.78 K2

 $\begin{array}{l} g_2 \left(10ft \right) = 24.4 \ psf \\ g_2 \left(19.5ft \right) = 25.8 \ psf \\ g_2 \left(29.4t \right) = 28.1 \ psf \\ g_2 \left(40ft \right) = 30.0 \ psf \\ g_2 \left(40ft \right) = 31.3 \ psf \\ g_2 \left(49.4t \right) = 32.6 \ psf \\ g_2 \left(59.4t \right) = 32.6 \ psf \\ g_2 \left(59.4t \right) = 33.6 \ psf \\ g_2 \left(59.4t \right) = 35.4 \ psf \\ g_2 \left(17.4t \right) = 36.1 \ psf \\ g_2 \left(15.4t \right) = 36.8 \ psf \\ g_2 \left(15.4t \right) = 37.5 \ psf \\ g_2 \left(15.4t \right) = 38.1 \ psf \\ g_2 \left(133.4t \right) = 38.7 \ psf \\ g_2 \left(158.4t \right) = 39.4t \ psf \\ g_2 \left(158.4t \right) = 39.4t \ psf \\ g_2 \left(158.4t \right) = 39.4t \ psf \\ g_2 \left(16.4t \right) = 39.4t \ psf \\ g_2 \left(16.4t \right) = 39.4t \ psf \\ g_2 \left(16.4t \right) = 39.4t \ psf \\ g_2 \left(16.4t \right) = 40.3t \ psf \\ g_3 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4 \left(16.4t \right) = 40.4t \ psf \\ g_4$

*Also see attached spreadsheet for values of k2 and 92 *

Nick Dastalfo Tech Report #2

(Determine External Pressure Coefficient, Cp

North - South:
$$\frac{L}{B} = \frac{194'}{134'} = 1.45$$

East - West: $\frac{L}{B} = \frac{174'}{194} = 0.69$

Walls: - Windward => Cp= 0.8 - Leeward => Cp=-0.3 in N/s, Cp=-0.5 in E/W -Side Wall => Cp=-0.7

Roofs : - Slat roof, 0=0

3

KO.Sh

7 Oish

h

0

3

Wind

Zone #	Pressure_
1	0
2	0
3	- 42.6 psf
4	-38.0 psf
5	-31.2 psf

33

Wind Loads

Nick Dastalfo | Structural Advisor: Dr. Thomas Boothby

Utilized Factors:

 $\begin{array}{l} Zg = 900 \\ \alpha = 9.5 \\ G = 0.894 \\ G_c p_i = +/-\ 0.18 \\ C_p: \ windward = 0.8 \\ N/S \ leeward = -0.3 \\ E/W \ leeward = -0.5 \end{array}$

Building Dimension:

North/South = 135 ft. East/West: Floors 1-4 = 192 ft. Floors 5-17 = 184 ft.

	Wind Force Determination - N/S						
Height	Approx. Floor to Floor Ht.	kz	qz	Windward Pressure	Leeward Pressure	Trib Area	Force (K)
10	9.5	0.849	24.429	13.074	-2.1546	1282.5	19.53112
19.5	9.5	0.897	25.816	13.817	-2.2770	1282.5	20.64026
29	11	0.975	28.066	15.021	-2.4754	1485	25.98193
40	9.5	1.044	30.032	16.073	-2.6488	1282.5	24.0107
49	9.5	1.089	31.343	16.775	-2.7644	1282.5	25.05877
59	9.5	1.133	32.592	17.443	-2.8746	1282.5	26.05793
68	9.5	1.167	33.581	17.973	-2.9619	1282.5	26.84852
77	9.5	1.198	34.472	18.449	-3.0404	1282.5	27.56036
87	9.5	1.229	35.369	18.930	-3.1196	1282.5	28.27801
96	9.5	1.255	36.110	19.326	-3.1849	1282.5	28.87017
105	9.5	1.279	36.798	19.694	-3.2455	1282.5	29.41999
115	9.5	1.303	37.509	20.075	-3.3083	1282.5	29.98887
124	9.5	1.324	38.109	20.396	-3.3612	1282.5	30.46838
133	13	1.344	38.675	20.699	-3.4111	1755	42.31316
146	12	1.371	39.442	21.109	-3.4788	1620	39.83271
158	12	1.394	40.103	21.463	-3.5371	1620	40.50063
161	2	1.399	40.262	21.548	-3.5511	270	6.776888
						SUM	472.1384

	Wind Force Determination - E/W						
Height	Approx. Floor to Floor Ht.	kz	qz	Windward Pressure	Leeward Pressure	Trib Area	Force (K)
10	9.5	0.848884	24.42885	13.074	-6.5225	1824	35.74
19.5	9.5	0.897091	25.81613	13.817	-6.8929	1824	37.77
29	11	0.975267	28.06584	15.021	-7.4936	2112	47.55
40	9.5	1.043581	30.03175	16.073	-8.0185	1824	43.94
49	9.5	1.089133	31.34264	16.775	-8.3685	1748	43.95
59	9.5	1.13256	32.59236	17.443	-8.7022	1748	45.70
68	9.5	1.166921	33.5812	17.973	-8.9662	1748	47.09
77	9.5	1.19786	34.47155	18.449	-9.2039	1748	48.34
87	9.5	1.229052	35.36915	18.930	-9.4436	1748	49.60
96	9.5	1.254788	36.1098	19.326	-9.6413	1748	50.63
105	9.5	1.278686	36.79751	19.694	-9.8249	1748	51.60
115	9.5	1.303411	37.50904	20.075	-10.0149	1748	52.60
124	9.5	1.324252	38.10879	20.396	-10.1750	1748	53.44
133	13	1.343931	38.6751	20.699	-10.3263	2392	74.21
146	12	1.370577	39.44192	21.109	-10.5310	2208	69.86
158	12	1.393559	40.10329	21.463	-10.7076	2208	71.03
161	3	1.399089	40.26241	21.548	-10.7501	552	17.83
						SUM	840.89

8621 Georgia Avenue

Seismic Loads

@ Exemption, Section 11.7

- Buildings with Seismie Design Category A are exempt from Seismi's Design Criteria and must only comply with Section 1.4

Consider Section 1.4: General Soluctural Indegrity...

Per Section 1.4.1-2

- A continuous load path has been provided for the building. The load path for the gravity system consists of mild reinforced and post-tensioned concrete slabs distributing the load to convete columns and shear wells which transfer the loads down into the foundation. This load path is discussed in more detail in Technical Report #1.

The load path in the lateral system consists of a preast concrete or window glazing facade that transfers the lateral wind (cantrols over seizmic) pressure the the concrete diaphrams at each floor. The lateral forces are disdributed to 14 sheer walls. The lateral load path is described in greater detail in Technical Report #1.

This section also requires adequate strength for the following Lood cases: - 1.2 D + 1.0 N + L + 0.25

- 0.90+10N - D+0.7N - 1 + 0.75(.7N) + 0.752 + 0.75(Lr or Sor R) -0.60+0.7N

These cases and hurther analysis will be performed in the Following Technical reports.

Per Section 1.4.3 - Lateral Forces

The story furces are given by

Fx= 0.01 Wx

Wx = total dead load per story

- See attached spreadsheet For story forces =

40

	Seismic	Force Determi	nation	
Story	<u>GSF</u>	Story Weight (psf)		Force (kips)
1	21,076.00	150	0.01	31.614
2	16,746.00	150	0.01	25.119
3	25,136.00	150	0.01	37.704
4	25,136.00	150	0.01	37.704
5	21,479.00	150	0.01	32.2185
6	21,479.00	150	0.01	32.2185
7	21,479.00	150	0.01	32.2185
8	21,479.00	150	0.01	32.2185
9	21,479.00	150	0.01	32.2185
10	21,479.00	150	0.01	32.2185
11	21,479.00	150	0.01	32.2185
12	21,479.00	150	0.01	32.2185
13	21,479.00	150	0.01	32.2185
14	21,479.00	150	0.01	32.2185
15	21,479.00	150	0.01	32.2185
16	17,008.00	150	0.01	25.512
17	784.00	150	0.01	1.176
	Fx = 0.01 * V	Vx	SUM	513.2325

Nick Dastalfo Tech. Report#2 Seismir Loads 42 Seismit Stary Forces - N/S, in Kips Assumption: - to estimate story weight, assume on average slab thickness of 10" concrete -> 125 psf - Add allowance for wall weights, columns, etc. + 25psf. - Therefore, assume We = 150 psf * Area 1.24 3 25,5k 32.2" 32.24 3 32.2K 5 32.24 5 32.2K 32.24 32.2k \$2.2 K 32.2× 32.24 37.2 h 37.7K 37.7" 25.1× 31.6K $---- V_{b} = 513^{k}$ 6

	- With s	implified Method	for buildings i	- a Sertmit Des	e-ĝ-1
	directions.	, the susmic sto	ny hirces are it	e same in both	
1,2K	7				
25.54					
32.2 K					
32.2 ^k	>				
32.2k	-				
32.24	+				
32.24	+				
32.2h	+				
32.2K					
32.2 ^u	>				
32.2 M	7				
32.2K	+				
32.2ª	+				
37.7 K					-
37.74	>				
25.1 k	>				_
31.64	>				